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: ABSTRACT
? '

Variational expressions of the admittance of the uniformly fed

rectangular aperture covered M.th homogeneous _.teri&l are derived.

The electric field inside the waveguide is assumed to be a dominant

mode (TEO1) plus the first higher order symmetrical mode (TE05). For

the aperture sizes of the pyramidal and H-plane horns, the contribu-

"" tion of the TE05 mcde to the aperture admittance is shown to be

negligible.

".. The admittance of a uniform/y fed aperture is assumed to approxi-

"

i_:. mate the mouth admittances of the pyr_nidal and H-plane horns. Calcu-

lations of the ad.n_l.ttance (or reflection coefficients) were obtained

.,,;.- for the rectangular mouth sizes of pyramidal and H-plane horns under
i'; !

_" free-space conditions and with slabs of Plexiglas and quartz covers.'t_'.

:" Measurements were obtained for a number of slab thicknesses of Plexiglas
<-_,

:_- and quartz.

;g,,

_:. Good agreement in terms of reflection coefficients was obtained
•_71 "

_. between the measured and calculated data for the pyramidal horn. The

_,_ agreement between measured and calculated reflection coefficients for

_:" the H-plane horns was not as good as the agreement obtained for the

pyra_l.dM, horn. The smaller flare m'lgle (9 ° ) horn data, however, is

shown to agree better with the calculations than the larger flare angle

(18° ) horn data, particularly in magnitudes. This agrees with the fact

-. that in theory as the flare angles approach zero with fixed mouth size
%.

..:'i- the H-plane sectoral horn would approach a uniform waveguide of mouth

, ..o.,

_h

%
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size cross section_ and hence, the aperture admittance would be

determined by the expressions derived for the unifo_l_ fed. aperture

assumption.

The results indicate that the expressions for the admittance of a

uniformly fed rectangular aperture can be used to approximate the mouth

admittances of the pyramidal and H-plane horn. The accuracy of this

approximation is similar to that obtained with rectangular waveguides

opening onto small ground plane covered with slabs of material.

As the larger dimension in the expression for the admittance of

a uniformly fed rectangular aperture approaches infinity, the aperture

admittance is shown to approach the admittance of a parallel-plate

wave_ide covered with a slab of homogeneous material.
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LI_T OF SYMBOLS

D

a short dimension of waveguide

b long dimension of waveguide

d thickness of slab

E electric field intensity

E0 amplitude of incident wave

f(_,z),g(_,z) normalized Fourier transforms of vector potential

gs,n surface-wave conductancewhere n refers to

specific poles

H magnetic field intensity

• I reaction integral

" _ k0 wave number in free space, _
#

_ kx, _ Cartesian components of wave number

; kz,ol,kz,03 wave numbers (defined in eqs. (2))

_,_": kzII wave number in region II

,_ kzIII wave number in region III

, R amplitude of TE03 mode

_ t time

x,y,z Cartesian coordinates

YO characteristic admittance of free epace

¥ol_Yo_ characteristic admittance of the _ and _0_

modes, respectlve_y_in regi_ I (defined in eqm. (2))

Yap aperture admittance

:." Wo_

/ ¥03 nors_ized value of YO_' Y01,7

, yap normalized aperture admittance

?
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cL,_ polar component for _ and , respectively

_n surface-wavepole

F reflection coefficient of uniform guLl.de

£ reflection coefficient of sectoral horn
S

cO permlttivity of free space

¢i permi_tivity of region II

P,_,z cylindrical coordinates

_0 permeability of free space

Superscripts:

I waveguide region

II material slab region

III free-space region

• TE transverse electric

_ TM transverse magnetic

S_bscripts:

x,y,z direction components of Cartesian coordinate8

_" p,_,z direction components of cylindrical coordin&te8

A double bar over a symbol indicates a double Fourier transform.
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CHAPTER I

INTRODUCTION

The electromagnetichorn is used quite extensively in spacecraft

ayplications for pattern considerations and plasma diagnostics. Often

horn antennas are mounted on the metallic body of a spacecraft in such

• a mannerthat the hol_ mouth is flush with the bod_. Generall_, the

spacecraft is covered with thi_k la_ers of dielectric ablative material

for protecting the internal instrumenta;:i_nfrom the intense heat darir_

_ reentry into the earth's atmosphere at hypersonic velocities. Thi4

excessive heat will cause the properties of the dielectric material to

_ change and, therefore, cause the admittance characteristicsof the horn

d
antenna tc_change.

_ The mouth admittance of horns have not been successful_ treated

_ theoretically. Experimentally, the mouth admittance for horns are
.o_."

_r

._.:" determined frcln measurements in the feedir_ uniform wave@ltlde F'1,21.

Equations describing the wave admittance in the sectoral horn are g_tven

by Silver [13 and Wolff [2_1" These equation_ can be used to determine

the reflection coefficient at any point in the set,oral horn if the

admittance is known at that point.

The purpose of this paper is to determine an approx -i_ate expression

for the mouth admittance of the H-plane sectoral horn and the pyre_dal

horn covered with slabs of homogeneous material. The mouth a_tttancesa

: of these horns are assumed to be approximated by the admittance of a

_" tlniforml7 fed rectangular aperture.

I
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Variational expressions for the admittance of a uniformly fed

rcctar_ular aperturo covered with slabs of homogeneous material have

derived [3-5]. in papers by Galejs _6-8], a trial field in the
been

aperture wa_ assumed to be 9.superposition of a sine wave and a shifted

cosine wave. _ais solution is also variational, but the infinite

ground-plane structure was approximated by a large waveguide. Ma_

authors asm_ed only the TEoi mode as a trial field at the aperture

which is te_-_minatedin a flat _nfinite ground plane. The possibilities

of contributions Lo the aperture admittance caused by a higher order

odd _etrical m_:l_ (TEo3) have also been investigated [9,10]. If the

admittance cf a uniformly fed aperture can be assumed to approximate the

mouth admitU_ce of a horn, a technique by which the properties of Le

dielectric material covering these horns can be determined. Hence,

_- these horns can be used as a diagnostic tool for making parametric
4.

studies.

complete derivation of the admittance of a uniformly fed

i_.i rectangular aperture, terminated in a flat ground plane coated with a

_ homogeneous dielectric material, is presented. In addition to the TEOI

mode, a higher order symmetric mode (TEo3) is assumed in the aperture.

The contribution to the admittance caused by this higher order mode is

shown to be negligible for the apertures considered. Therefore, the

variational solution obtained by assuming the TEoI mode only is used

for the mouth admittance of the sectoral horn and pyramidal horn.

The mouth admittance of two H-plane sectoral horns and one pyramidal

horn are investigated with and without a low-loss dielectric covering

a ground pl_ne. Two H-plane sectoral horns with different flare angles

%

I
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(9° and 18°) and fixed mouth size (1.016 x 6.248 am) were chosen to

demonstrate how well the theoretical computations can better approx.-

mate the measured admittance values (or reflection coefficients) by

decreasing the flare angle.

The theory for the admittance of a uniformly fed rectangular aper-

ture is given first. The pyramidal horn end the H-plane sectored horns

are discussed separately. In the Appendix, the admittance of the

.' rectangular aperture is shown to approach the admittance of a paredle]

plate waveguide as the larg of the rectangular aperture

becomes infinite.

%,:

i,_o:

I
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CHAPTER II

THEORY

Since the mouth admittance of a sectoral horn is assumed to be

approximated by the admittance of a uniformly fed rectangular aperture,

the derivation of the latter admittance is given here for completeness

[gJ
The geometry of the problem which is divided into three regions

is shown in figure i. A rectsn&nllarwave.tide is terminated in a flat

_. ground plane of infinite extent in both the x- and y-direction. A slab

of homogeneous dlelectric material of thickness d is assumed to cover

_. the ground @lane as well as the open-end waveguide.

_" _ In region I, which is the region inside the waveguide, a TEoI

;, mode is assumed to be incident upon the aperture from the left. The
¢,

discontinuity at z = 0 excites both propagatln_ and nonpropagatlng

) reflected modes. However, since the TEoI mode is assumed to be

'_!_ incident upon the aperture, only a reflected TEoI propegatir_ mode

_:,_ is excited. Higher order nonpropegating modes (evanescent modes) are
u

"i excited, but because of the s_etry, only odd modes exist. For this

problem, only the TE03 evanescent mode is assumed to be present.

Other higher order terms could be obtained by applying the same pro-

cedure. From the foregoing assumptions and with e _t time dependence

assumed, the fields in region I (waveguide) are written

1970021193-014
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X

Region II

- Figure i. - Rectangular waveguide covered with a slab of homogeneous
material of infinite extent in the x and y directions.

4
I
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ExI(y'z) = Eo(e'Jkz'OlZ + PeJkz'OlZ)c°s _Yb+ R cos _ eJkz,O3z

EyI(y,z):0

HxI(y,z)=0

where

kz,ol:koII-lu_2_kob!

kz,o,=-JkoIfD_-_-1
• V_kob/

' I (e)YOI = YO i -

'i,_ %3 : -JYoV\[_ob/

_ The fields in the dielectric slab (region II) are expressed in
%,

terms of the electric and magnetic vector potential, A* and A,

respectivelyl that is, D = -_x A* and B = _ x A. From Maxwell's

equations, the total transverse field components are determined from

the superposition of TE and TM modes to the z-axis. These trans-

verse fields are given as

J
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_4 II i 82AzII

ExII(x'Y'Z) = " _i -'_Y--"+

8_II 82Azll
EyII(x,y,z = 1 1

) cI _ j_oel _
} (5)

_2A_II _AzII1 1II
Hx (x,y,z): .....

A; 1 _AzII
_II(x,y,z _ = 1 _2 II

•' jw_oe I _y3z _0 8x

;' The potentials AzII and AzII must also satisfy the scalar wave

:, equations

: g -,

"- V2Az II 2_ 0 14 II
•,._. + E = 0

•_ (_)
!.

II II 0
"!",.. _A z + _D2_0¢IAz --
:6

.,

V
-?

":_' Partial solutions to the wave equation are expressed as [5,11]

:_ IA;II_ :/ IGII(kx'ky'z)l e"_kXx e'JkYy dkx dky (,)
B _ lm

_AzII / (2")2 .oo \FII(kx'ky'Z)/

A similar set of equations are written for free space (region III)

%

-,'

._?
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1 ()A_III _A ZIII "1
ExIII(x,y,Z) = ...... �.._o _ _oEo

I I

--aE"III(x'Y'Z) = O¢-- _X + ' 'J_oco _z

(6)
_A_ III _AzIII

HxIII(x,y,z) = , ,i + 1

A; _AzlII
i . a, i

HyIII(x,y,z) = 1 _2 llI ....-. J_¢o _z _o _x
.a

where

I

L /iii/ 1,...,._ -_ _-J__-J_Y_ _ (7)

' \AJ_ "=V',_ / (2")2 III(kx,ky, zS.

,_ are partial solutions to the wave equations

,'- _A_III 2_00A; III--: +_ c = 0

. (8)

V2Az III+ _2MoeOAz III =0 j

BM applying the boundary conditions at z = d, a relationship

between GII and GIII and FII and FIIl is determined. At 1 = d

tangential E and H are continuous across the boundary; therefore,
/

/

2:.

,%
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" ExII(x,y,d) = ExIII(x,y,d)

EyII(x,y,d)=EyIII(x,y,d)
(9)

HxII(x,y,d)=HxIII(x,y,d)

_II(x,y,d) = _lll(x,y,d)

The substitution of equations (3) and (4) and (6) and (7) into

equation (9) yields

FII(kx,_, d)= FIII(kx,_,d)

dFII(_'_'Z") I = ClcO dFIII(kx'_'z)Idz Idz z=d z=d "
J

(zo)

Gn(_,_,d)_-flGIII(_,_,d)
co

z=d z_l

= However, in region III the plane wave propagates in outward direction

• only; therefore, Flll(kx,ky, z) = M(kx,ky,kz)e jkzIIIz and

GIII(kx,_,z) - N(kx,_,k z)ejkzIIIz wh_re kzIII = _.

Hence, equation (i0)becomes

FII(kx,_,d) = FIll(kx,_,d)

• dFII(kx,._, Z )I .j_ III III.az z_ " kz F (_,_,a) (II)

1970021193-019
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GII(kx'ky'd) = _0 GIIl(kx'ky'd) (ll)

a

dOII(kx'k_'z)Idz z=d = "j clcOkzIIIGIII(kx'ky'd)

Defining

f(z) = FII(l_xak_'z)''

FIII(kx,ky,d)

(m)

g(_.)=oII(kx,_,_-
)

oIII(N,N,d)

Substituting equation (5) into (4) yields

o' ,i

: d2OII(kx,ky,z)" ' * (_o%" kx2"N2)on(N'N'')=o
":, ale (z3)

5.' d2FII(kx,k_r ,z ) . (_2_0¢1 . kx2 . ky2)FII(kx,_,= ) - 0
:: dz2 •
b'

_+ Dividlng equation (13) _." OIII(kx,ky, d) and FII(kx, ky,d), respec-

tively, and making _ ,,quation(12), equation (13) becomes

d2g(z) + k..II g(z) = 0
dz 2

(l_)

d2f(z) + kzII f(=) = 0
dz 2

where

.. kzll =

p

1970021193-020
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Solutions of eq_mtions (14) are of the form

f(z) = Ae"jkzIIz + BejkzlIz •

g(z)--ce'JkzIIz+DeJkZnz ,

From equations (11), the values of f(z), g(z), f'(z), and g'(z)

at z = d are given as

f(z)z-d- z

df(z11 = "J el kzIII
dz Iz-d ¢0

_. g(z) I ;-_:, z=d ¢0
4

-. dz-_/I Cl IrI,. z=a= "j e0 kz ,
"J"•

i"

" RM using these boundary conditions, the coefficients A, B, C, and D
aC

_ are determined. Once these coefficients are known, the initial condl-

;, tions f(O), f'(O), g(O), and g'(O) are determined. Hence,

.i _ •

f(O) = cos kzIId + J _ _kzIIIsin kzIId

f'(0) " kzII sin kzIId - ,.icl kZ III COSkzIIdcO

(zz)

¢i(c ,IId kzIII sin kzIId)g(O) - _0 os + J kzIi

J
E

"_i_ g'(O) = _0 (kzII din kzII_ . jksIIl cod ks_)

, % •
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where

l

_m_ .jV_+_2__o_ _ +_ >_2
e

The signs chosen on the radicals of kzIII in equ_.tion(18) assure

proper behavior of the function at z = ®j that is, to satisfy the

radiation condition.

' The foregoing discussion is necessary in determining the aperture

admittance of the rectangular e_erture. Since tangential E_ and _Hj.

are continuous across the bounda_ z = O, the reaction integral [ll_lfl

is also continuous, i.e.,

,_,

,, _.x,y, _y
_, I '.'-a/2 4,/2

.£,,/=[*,/_'
_/-a/2 U-b/2 ExII(x'y'O)KyII(x'y'O)dx _ (191

First, the reaction integral due to the fields inside the wave_de is

considered by substituting equations (1) into equation (19) and per-

forming the integration. The reaction integral becomes

i

1970021193-022
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I = Yo1E02(1 + P)(1 - P) _ - YO3R2 ab (20)2 2

The aperture admittance is defined as

(z r) (21)
Yap=Yoz(i+ r)

equation (20) is wri%ten as

2 ]. + .,'c.,3 R2 (22)
Yap = a-_ £02(1 + [,)2 F43(1 + r)2

Next, the reaction int::graldue to the fields in region II at z = 0

=/,/2 _b/2
I 'J -a/2 J-'b/2 ExII(x'y'O)HYII(x'y'O)dx d,7 (23)

The limits of integration can be extended to infinityt since the

_ ExII_ (x,y,O) is zero outside the aperture. Then.,by applying Parseval's

Theorem, equation (23)becomes

_: I =(=,,)=J j II(-kx,-ky,O) II(kx,Sr, O)d_xky (22)

' where _x II and %II represent the double Fourier transform of Ex

and _, respectively. In region II_ Hx and HM, Ex and Ey are

written as

_II(x,v,O) = 1 /_J_ _IX(kx.ky.O)e-_llr_x e-_ll_¥ _ _ _,1

I

HyIl(x,¥,O) . 1 %II(kx, ky,O)e "_kxx e'Jk¥¥ 4kx _ _ (25)i:_: (2.)2

%. '

(
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Exll(x,y,O) _ i - II

_n(x,y,o)-_i °'J"
(2_)2 J-- ._ 4II(kx'ky '0)e-jkxx e'Jkyy dkx _ ..,

and from equations (3) and (5)

Exll(x,y,O) = 1 JZ O_._ l'J_ Gll(kx,k_j,O) ,_

('jkx) dFZZ(kx'ky' z )I o]e-jkxx e-Jkyy dkx dky
+j,_o_,, - _ ....

Z--

,(26)

_I(x,y,o)-_ J _ Gn(kx,_,o)(2_)2 ® -'_ _i

+ ('jky) dFll(kx'ky'.Z)I o]e-jkxxe-Jkyydkx d_
jct_OCI dz z=

or in termsof g(0), f'(O) and GIII(kx,ky,d), FIII(kx,ky,d)

(2,,)2 L %

. Jkx. z,(o)FZ'r'r(&,5,,a__,-jh,x_-jkyy"_ ax,z,lo.._¢1

_(27)

f.®f.®[_jk_,(o)GnT(_,kz,d

. .j_o_i (o)FXn(,._,_,a,-a_,-a_y_
,d

1970021193-024
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Equating equations (29) and (27), the double Fourier transform of

ExII and EMil are determined

_xII(kx,_,O) = jky g(0)Giii(kx,_,d )
eI

- Jkx f'(0)FIII(k_,k,,,d)
Je_OCl

(28)

_II(kx,_,O) = - Jkx--_g(O)GIII(kx,ky, d)

- J_ f'(o)FnI(k_,k..,_)
ja_Oel xy •

The fields at z = 0 from inside the guide

:"". ExI(x'y'0):_ -_12o-b12;'x_(kx'ky'0)e'J_xe'JkYYd_ _j

:_,. = EO(I + F) cos _y + R cos 3_Y...' b b
:- ),(ag)
;A

• z_Z(x'Y'°)=(a.)---_o-_12_-b12
=0

Therefore,

U(,<:,,<,,o>: %(_>['.o(_+,">_(,<,>+,,o,(,<,<>_]"
, + +oc,<<,>],,_ (3o)
r.

_z(_ _ o)o,, ,t ,t

i
m
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where

R
S -

EO(I + r')

_a

. a sin-
_/2eJkxx ax= 2

Co(kx)= a/2 kx___a
2

(3z)
2_b cos _b

b/2eJ_Ycos_ .2

[ b/2 6.b 5_
C3(_) =_-b/2 ejkyy cos b_ dy = - cos 2(3,_12 (_rb)2

$

:" Since the tangential components of Ex and _ are continuous across

.- the boundary z = O, the double Fourier transforms are also continuous;

'" therefore,

.°

_)._: ;.xI(kx,_,o)=_xn(kx,_,o)=_xn(-kx,-_,o)

.._,, (32)
;=

_. , ,0 = ,0)

• Substitution of equations (28) and (30) into (32) gives

kx_3¢l i Co(kx)[Eo(l+ r)Cz(ky)+ RCs(ky)_1

a _mmR_mm_mm

FzZZ(kx,_,d)= _x2._2 f,(o)
(33)

. z Co(,)_ + )]J
,. OIII(k.x,ky, d) = kxJ2'_c_ g--_i 0 (1 r)Cl(ky) + RC3(kyi;!i
:':2:
_'

r

',2

, °%

i
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or

-m

Fiii(kx,_, d) = . kx_O¢i --i _xl(kx '
kx2+ky2f'(o) _,o)

b_ _ __,N, ol
GH_(_'_'a)="J_2+_2g(o--_

From equations (3), (9), (12), and (29)

½n(kx'ky'O)= -i g'(O)Gn_(kx'_'d) �J_0f(o)Fn(kx'_'_)
_o% (35)

and from (34)

I: _n(_,_,o) =_j _2 +_-----i\ko/\_(o1

eo\ f'(o)/J

;:, Therefore, from equation (24)

_ i r-j" NIho% g'(o)\

, (iV %_f(°)_ (37)

and from (22) and (.50)

Ya_" "_ a_(2,,)_ 'N2 + _2 _(5")c1(5") +

.,, +a_c_(_y)c_(_×_N] \_._(o)/ (_)
_,44

I

]97002] ]9:3-027
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rewriting equation (38) as

Yap--Yll+ 2GY13+ (Y33+ Y03)s (39)

or

Yap Yo1 Yo1 Yo1 Yo1 Yo1]

where

• YZm = -j a]_'(2_:)2 _ =, Co(kx)Co(kx)Cz(ky)Cm(ky ) " kkoI kkog(O)/

,,j

_: +\Voo/ "°\f6(°)/J _ _ (_m=n,13,33) (_z)
"L "4

_:"

:: The normalized aperture admittance is stationary[3]; therefore,
._._
.:

_ _Jap
_ _ = o (42)9."

,o,'A,

?.
_, Hence,

• Y"o_1G= (_3)
L_+Yo_
YOI YOI

, . Substitutingequation (43) into (40)

'_°

, _. _

•' Yn \Yol/ }'j._ (_1

Y'P- D/ _oOl"_.: gol + YO Yll ¥33 + ¥03

: YOI

%

1970021193-028
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The integrands of equation (45) must be examined carefully for singu-

larities in the range of integration before evaluation of the integrals

can be performed. No singularities occur over the range of m, but

over the range of 6 two types of singularities can occur; namely,

branch points and poles. The singularities are contained in the ratios

g'(_,O) kof(_'O)
and • In the region where these poles exist on the

kog( , 0) f'
real axis, the numerical integration is performed sy_netr_cally about

each pole so that the integrals of the integrand on either side of the

poles cancel each other; that is, the intergrand is autlsymnetrical about

each pole K13_]. The contribution of these poles is obtained by Cauchy's

residue theorem.

For lossy material (%/% complex), the integration of equa-

tion (45) presents no difficulties except at the branch point 6 = 1

where a proper root change of #l - B2 must be taken into account.

However, for nonlossy material (¢1/¢O real), poles exist on the real

_-axls. In the _nterval between 6 = 1 and _ = _ for Cl/C0 > l,

the integration contributes only to the susceptance in the admittance

expressions. In the range _ --0 to _ = l, the integration con-

tributes both to the conductance and susceptance. The only other

contribution to the conductance is due to the residues of the simple
|

in the interval 1 < _ <_ • The conductance as a resultpoles

of these

1970021193-031
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where the Bn'S are roots of the trm_scendental equations

, ,lh- _
_- -- .tan kod ¢0 2 _ CO (TE)_B 2 - 1

(4y)

- (_)

" If the larger dimension b in equation (45) for the dominant

":" TEoI mode approaches infinity, the aperture adnLittance should approach

. the admittance of a parallel plate wavegulde covered with a slab of

homogenecms material. This is shown to be the case in the appendix,

_ both analytically and eomputationally. The agreement between the two

.:. methods of obtaining the admittance of a parallel plate waveguide

.'. supports the validity of the expression fo_ admittance of a rectangular

._ aperture.

i.
4

t

t;
,f

,t

f

¢

m,, mmun,F nm_ _,mJ.--, ,,,,n_ _ _ - . _,u,,.- ,, _ _n _ _muau I
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CHAPTER III

PYRAMIDAL HORN

Design

The pyramidal horn was designed (a) originally for tests in the

8mc-Jet test facility at L_.gley Research Center, Ha_rpton, Virginia.

A detailed drawing of the pyramidal horn is shown in figure 2. For

"7

/ such tests, the throat aperture of horn was reduced slightly from stan-

dard x-band waveguide dimensions, 0._ by 0.9 inch to 0.375 by 0.750 inch.

From the throat the horn flares linearly in the E- and H-planes at
.o

angles approximately 8.7° and 9.0°, respectively. The overall length

is slightly greater than 6 inches (6.063 in. ). This fixes the mouth

'_ size at 1.3 by 1.7 inches, with the larger dimension corresponding to

-,'* the H-plane. A plate for the purpose of mounting a ground plane or of

?_ attachment to a spacecraft is provided at the mouth of the horn. The

_: throat is terminated in a flange for connecting to a waveguide. The

,ft_ :,

_. wall thickness is _pproximately 0.129 inch.

r
2" Experiment

A 12- by 12-inch ground plane was attached to the plate at the

mouth of horn. A wavegulde-to-wavegulde adapter (WR 62 to WR 90) was

connected to the throat flange. This adapter (transition) enabled the

horn to be connected to standard waveguide (RG-52/U). The horn was

+ then connected to a microwave test setup as shown by the schematic

:. drawing given in fi_tre 3.

_ . , • i , | , i i, i

;_" (a)M. C. Gilreath of the Langley Research Center designed the

/_ pyramidal horn.

_°_

_."

197002119:3-084
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The following procedure was used in measuring the mouth admittance

of the pyramidal horn: The :_outh of the horn was shorted by clamping a

12- by 12-inch flat ground plane to the ground plane attached to the

horn. The probe in the slotted line was moved along the line until a

minimum reading was obtained on the standing wave indicator. Upon

removing the shorting plate, the probe was moved along the line until

a minimum reading was found. Since the standing wave repeats itself

every half guide wavelength, the guide wavelength is determined by

multiplying the distance between minima by 2. In addition to the guide

wavelength, the distance 2_D between the minimum with the shorting

plate and the minimum without the shorting plate is needed in determin-

ing the phase of the reflection coefficient. This phase is found by

entering the Smith Chart on the left-hand axis (zero reactance) and

rotating AD/_g around the chart. The phase angle is taken with respect

to the right-hand axis of the Smith Chart. The VSWR of the horn is

determined by calibrating the standing wave indicator on a maximum and

moving the probe along the slotted line until a minimum reading is

obtained. From the VSWR, the magnitude of the reflection coefficient
k

VSWR 1
is computed_ that is, JPJ- VSWR + i"

The measurements as described in the preceding paragraph were made

over a frequency range of lO.O to 10.6 GHz in 200 MHz increments. Each

frequency was accurately set by the frequency meter. Measurements were

performed for the horn radiating into free space and into a number of

Plexiglas and quartz dielectric slabs. A total of eight slabs of

different thicknesses were used for Plexiglas; namely, 0.1537, 0.2464,

0.3454, 0.4902, 0.5740, 0.9322, 0.9868, and 1.2408 am. Three slab

Y

mmwA-

* _ ,-- _,,. . aim

19700211g3-037
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thicknesses of quartz were used: 0.5179, 0.6390, and 1.29_ cm. To

reduce any reflections that m_y occur from the surrounding environments,

microwave absorber material was placed around the horn for all measure-

ments. The magnitude and phase of the reflection coefficient for free

space and for Lhe various slab thicknesses are shown in figure 4 for

Plexiglas and in figure 5 for quartz over the indicated frequency range.

Calculations

By supplying the paramaters a, b, d, ¢i, and frequency, equa-

tions (44) and (45) are used to compube the admittance of a rect_t_lar

aperture that is fed by a uniform waveguide. For the pyramidal horn

mouth size, the dimensions a and b equal 1.3 and 1.7 inches,

respectively. The thickness d of the material covering the ground

. plane and horn mouth was varied over a range of 0.0 to 2.0 am in O.1 am

increments. The complex dielectric constants were assumed to be

2.55-j.01 for Plexiglas and 3.76-j.01 for quartz. A small loss was

assumed to alleviate the surface wave problems that occln'in the inte-

gration when the dielectric constant is lossless [9]. The frequency

range was the same as the range used in making the measurements, that

is, lO.O to 10.6 GHz in 200 MHz increments.

Equation (44) takes into account the contribution of the higher

order mode TE03. This contribution is the term -tYl3)2""
• • For the

Y33 + Y03
aperture size 1.3 by 1.7 inch, the effect of this term on the admittance

is negligible. This is shown in table I for several frequencies and

several thicknesses of Plexlglas. Therefore, the admittance obtained

by assuming only the TEo1 mode in the aperture is sufficient. Since
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(a) Frequency = i0.0 GHz.

Figure 4. - Pyramidal horn reflection coefficient as a function of

slab thickness for Plexiglas.
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(a) Frequency = i0.0 GHz.

Figure .5.- Pyramidal horn reflection coefficient as a function

:" of slab thickness for quartz.
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TABLE I.- NORMALIZED ADMITTANCE CALCJLATIONS INCLUDING

HIGHER ORDER MODE FOR I'YRAMIDAL HORN

-- i • • I • I I

I

Frequency, Plexiglas .yl_2
thickne ss, Yll + _ap

GHz cm Y33 YO3

i0.0 0.9 2.6722+J.1967 0.00_,_O-j.0136 2.67_2+J.1431

.,.. i0.0 i.0 i.1748"+J.0899 O.0002-,,I.OCt1 i.17C:K)+J•085_

• io.o 1.5 2._oo2-j._3 o.o318-,I.o12_2._32-j.156_

•!:, 10.2 0.9 2._$SP_+J.0489 -.0030-J.0108 2.6798+J.0381

;. lO.2 1.o 1.162_ �4(¸�Äi.1611,+j.13y_

_;: lO.2 i.5 2.3o99-,i.3o59 o.o16_-,I,o'a752.3_-a.33_

'._ i0.4 O.5 2.6781-J. 0621 -.0057-J.0_.02 2.672',-J. 0723

':_. 10.4 i.o 1.1576+,I.19o9-.0027-,I.ooi_1.1_.9+,i.1895

10.6 1.5 2.1739-J._416 -.0038-J.0272 2.1701-J._688

i

"1870021193-047
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the flare _igles of the horn are small an_ the wave is assumed to be

plane at the mouth of the horn, the reflection coefficient both magni-

tude end paase is computed from the normalized admittance by the

relationship

1 - Yap
r -

1 +Yap

The magnitude and phase of the reflection coefficient are plotted as

a function of slab thicknesJes on the same graphs (fig. 4 for Plexiglas

: and fig. 9 for quartz ) with the measured data. The reflection coeffi-

cient given Oy equation (48) assumes the flare angles have little

effect on the aperture admittance. The agreement in the data indicates

that thig was a valid assumption.

Discussion of"Results

". C'zd general agreement was obtained between measured and calculated

data for most of the slab samples. The greatest disagreement occurs for

-L

the smallest slab sample of qusa_s (0.322 cm) as shown in figure 5

_ ccmparlng the magnitudes Q

4; P_nce for .*ree spaco con_: _ions excellent agreement was obtained,
..r

_" the errors ara caused by the slabs. The inability to clamp the samples

snugly to the ground plane and. the non-unifor_l.ties in the samples will

cause some errors in the measurements. In addition to these sources of

error, the finite edge of the slabs could influence the aperture

admittance (or reflection coefficient) if surface waves are strongly

coupled into the slabs. In the theoretical model, the lielectric con-

:: stants of the slabs were assumed to have a small loss for computational

,:..i,.,_ reasons_ that is, to eliminate the probl_ of computing the surface

,2

1970021193-048
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wave conductances. Since the finite edge cf the slabs cause reflections

of these surface waves for the experimental model, these waves must be

considered. For the given 12- by 12-inch slab sample size, the slab is

not lossy enough to damp out these quasi-surface waves at the finite

edges of slabs. Therefore, the conductance of the aperture admittance

assuming infinite slabs of material was investigated.

The total conductance, the surface wave conductance given by

equations (46) and (_7), and the percentage of surface wave conductance

ar_
contained in the total conductance m given in table II for the small

quartz slab (0.322 cm) and for the Plexiglas slab (0.345 cm). The

percentage of surface wave conductance is small for both slabs; however,

the percentage for the quartz slab is greater. The greater the surface

wave conductance, the greater the surface wave is coupled into the

slab, and hence, the gr2ater the effect the outer edge could have on

the aperture admittance (or reflection coefficient). This effect could

be such that it reduces the magnitude of the reflection coefficient.

This could account for some of the error in the quartz slab data shown

in figure 5. The same kind of error was observed for a standard

X-band waveguide (0.4 by O.9 in. ) covered with the same quartz slab

thickness [13].

To illustrate the effects the slabs have upon the antenna pattern,

E-plane radiation patterns were measured at i0.0 GHz for free space,

for the O.322 am quartz slab, and for the O.345 am Plexiglas slab.

These patterns are shown in fi_ar_s 6 and 7. A greater amount of

ripple is observed in the pattern with the quartz slab cover than in

the pattern with the Plaxiglas slab cover. The greater the amoun_ of

r

/,

1970021193-049
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TABLE II.- CONDUCTANCE CALCULATIONS FOR PYRAMIDAL HORN

Normalized conductance

Frequency, Plexiglas Quartz
GHz .....

Surface Surface
_- Total Percent Total Percent
> wave wave

i0.0 i.9601 O.0972 4.9 3.O949 O.3184 iO.3

_" lO. 2 2. o24o o. 1231 6.1 5.2o2o o. 3771 11.8

k: lO.4 2. o81o o. 15o8 7.2 3.297o o.4294 13. o

•_ lO. 6 2.1599 o. 1792 8.3 5.5814 o.47o9 13.9

;L

I

.'t

2

I
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90o

270 o

Figure 6. - E-plane radiation pattern at I0.0 GHz for free
space and .322 cm quartz slab.

1970021193-051



42

90°

I
0o , o

270°

Figure 7. - E-plane radiation pattern at i0.0 GHz for
free space and .345 cm Plexiglas slab.
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ripple in the pattern, the greater the trapped energy 5_7; hence, the

. greater the surface wave.

By fixing the H-plane mouth size (4.318 cm) for varying E-plane

mouth size, computations of the surface wave conductance were made at

lO.O GHz for the two dielectric slabs. A plot of the surface wave

conductance as function of E-plane mouth size is shown in figure 8

for the 0.522 cm quartz slab and the 0.345 cm Plexiglas slab. Similar

graphs for different frequencies and slab thicknesses can be made. By

choosing the proper height of the E-plane dimension for fixed H-plane

width, the surface wave conductance can be kept at a minimum. Perhaps

_ if the pyramidal horn were designed for minimum surface wave conduc-

tance occurrence, the measured and calculated data would be in better

:' agreement.

"2

r

t

,°/

:2g."
:.,_'.

• "_ _ • I I I
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(I
0 1.0 2.0 3.0 4.0

E-plane mouth height, cm.

Figure 8. - Normalized surface wave conductance as a function

of E-plane mouth height at lO.O GHz.
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b_IAPTER IV

H-PLANE HORNS

Design

With reference to sketch given in figure 9, the dominant mode

fields in an H-plane sectoral horn are _2]

Ez = A cos n,!_2)(ko p) +_l)(koP) _

Hp_nAj(o_opSinn¢ [_(2)(koP )+k"= _i) (k0P_ (49)

= J_o (k°_)+ (k°__
d

where the primes denote derivatives of the Hankel f_netlons with

• respect to koP and n - 2T_ " For computational reasons, the flare
• .L

angle 2_ was selected such that n = 2T_ is an integer; that is,
" .L

.- computer programs for determining integer order Hankel functions are
i'

readily available. Equations (49) were presented here since the order
,:

( of the Hankel functions was a design criterion

,_ For fixed throat and mouth size, two H-plane sectoral horns were

_ constructed for different flare angles. The throat and mouth size was

0.4 by 0.9 inch (standard x-band size) and 0.4 by 2.46 inches,

respectively. The two flare angles chosen were 18° and 9°. These

flare angles with fixed throat and mouth size fix the lengths of the

horns at 4.937 and 9.91] inches, respectively. Each horn is terminated

/ in a 12- by 12-inch flat ground plane. X-band flanges are connected
i

" to the throats of the horns. A drawing of the horns is given in

'., figure I0.

1970021193-055



J

Z

.J

Figure 9. - Sketch of H-plane sectoral horn.
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Experiment

The H-plane sectors/ horns were connected to r_microwave test

setup in the same manner as the pyramidal horn in the previous chapter.

However, in this case a waveguide-to-waveguir_.eadapter was not needed

since the throat size was designed at standard x-band waveguide size

(0.4 by 0.9 in_'h).

The procedure used in measuring the reflection coefficient of the

H-plane horns was the same as the one used for the pyramidal horn

given in the previous chapter. Therefore, a description of the pro-

cedure will not be given here.

The measurements for these horns were performed over a frequency

range of 9.0 to 9.6 GHz in 200 MHz increments. The same slab samples

of Plexiglas and quartz used in the pyramidal horn experiment were

uaed in this experiment. The magnitude and phase of the reflection

_0ert

_ coefficients for these horns I determined from the measured data in

the same manner described in Chapter llI. For each frequency, the

reflection coefficient was plctted as a function of slab thickness.

%

These results are shown in figure ii for PlexJglas and in figure l2 for

_ quartz for the two flare angles of 18° and 9°.

• Calculations

The admittance of an H-plane sectoral horn related to the reflec-

tion coefficient is determined fr_a equation (49); that is, the wave

admittance is defined as [1] 6

y(kOo) ,. H_ (50)
Ez

...,= ' '-_ "al r .... _ m l _--" I
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Using equation (47), equation t_) Becomes

51
Dividing equation (Ill)by the characteristic admittance of the sectoral

horn

(koP) = JYo (52)

the normalized wave admittance is written as

I

: - • (5_)

The reflection coefficient in the sectoi'alhorn is dsfined as

_,. r s = _ (54)H(2 i:_)(Sop)
;,

:_, s4 s_ 53
_: Substitutingequation (I) _Ito _) for _, equation (I)become8

_' (2)(koP 'i_''tl . •_. H_ ) sn ,koO)
,, +r, • 2)'(k@)
' Yc(koo) I + rs

and solving for P S

YI +--
Yc

r_= ........ (56)

%
i

t

D
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.. LIST OF SYMBOLS

I

a short dimension of vaveguide

b long dimension of vave_tde

d thickness of slab

E electric field intensity

. E0 amplitude of incident wave

f(_,z),g(_,z) normalized Fourier transforms of vecto,_potential

gs,n surf_ce-_ave conductance where n refers to
/

specific poles

H magnetic field intensity
J

• I reaction integral

++, k 0 w_ve nmnber in free space_
e

,,. _,_ Cartesian components of rave numberg
_; wave numbers (defined in eqs. (2))

kz,Ol'kz,03

_+" kzlI wave number in region II

•+ k,m wave number in region IIl

_+" R amplitude of TE03 mode

"_, t tim+
.++

x,y,z Cartesian coordinates

YO characteristic admittance of free spice

Yol_Yo_ characteristic admAttance of the _01 lad SO_

modes, respectlve_, in region I (defined in eqlh (2))

+:" Ye_ sperture admittance

/ ¥0_ normLltzed value of YO_J YO_

_.. Yap noranlised mperture _aittance

.t
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: For 18° and 9° flare angles, the orders of the Hankel functions are

i0 and 20, respectively. At the mouth of these horns, the ratio

H(2 )(k4_°_) • Hn(1)' (kO'°2) is approximately equal to -1 for n = 10

with k0P2 = 2, X 19-972 and for n = 20 with koO2 = 2_ x 59.950

over a frequency of 8.4 to i0.0 GHz. Therefore, equation (3) becomes

Y(koO 2 ): l+

:; rs(kOP 2 ) - L;(koP2) (57)

.: 1 - Y(ko°2)
-: Y'c(ko_e)

.¶

• If the admittance were known at the mouth (P = P2 ), the reflection

coefficient could be determined at this point from equation (96). The

_ admittance at this point is assumed to be approximated by the admittance

_ . obtained from equations (44) and (45). Substituting the admittance
.£

) (YolYll) obtained from equatio_ (45) for the admittance Y(koP2) in

_:-- equation (57), the reflection coefficient becomes2:

._._
_=_-_; Hr_ (koP2)

_: l+j 1-
) (ko°2) (581';, P = . . H_2 '"' YlI,.

:::" i - j i - ''

r:'.- H(2 ), Yll. (koO 2 )

where the characteristic admittance given by equation (52) has been

substituted. For the two H-plane horns considered, the term

"2,-" i - _ ) is approximately equal to • Therefore,

\kob/ H!2)'(ko 2)•%V:

ii_.,, equation (_8) with Yll = becomes

...._ Ya_
;_.

I
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1
r - - Yap (59)
s l+Yap

By m.lI_lying the parameters a, b, d, el, and frequency and

selecting the aperture size to be the same as the H-plane horn mouth

size (a = 0.4 inch and b = 2.46 inches), the admittance Yap = Yll

was determined using equation (45) for a frequency range of 9.0 to

9.6 GHz in 200 MHz increments. These computations were made for free°

space conditions (d = O) and for Plexiglas covers (cI = 2.55-j.01)

and quartz covers of va_'ying thickness d (O.1 to 2.0 e__ in O.1 _

increments). Here again, small losses were assumed to alleviate the

surface wave problems that occur in the integration when the dielectric

constant is lossless.

_,i As before, the contributions due to the higher order mode (TE03)

are negligible for the chosen aperture size. This is shown for

several slab thicknesses of Plexiglas in table III. Therefore, the

i_,_..... admittance obtained by assuming the TEoI mode in the aperture is

"_i sufficient; and hence, the aperture admittance Yap is equal to YlI'

given by equation (45).

The reflection coefficient for both H-plane horns is determined

from equation (59) and equation (45). The magn'_tude and phase of the

reflection coefficient are plotted as a function of slab thickness on

the same graph with the measured data. These plots are shown in

figures ii and 12 for Plexiglas and quartz, respectively.

1

°. L

,'N_ ,

I
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TABLE III.- NORMALIZED ADMITTANCE CALCULATIONS INCLUDING

j HIGHER ORDER MODE FOR H-PLANE HORN

: Frequency, Plexiglas _yl_2
: GHz thickne ss, Yll Yap
- cm Y35 + Y05

m , , ,

8.4 O.9 2.1930+j. 1.1086 O.O0090-j. 00070 2.193+j.1.1079

_;_ 8.4 1.0 i.5356+j.2477 +.O008+j.00009 1.5364+j. 2745

:: 8.4 i.5 i.9863+j •9128 -.O0030+j •00070 I.9860+j.9135

"(; I_;_-: 8.6 O.9 2.2144+j. i.467 O.O0050-j. 00090 2.2147+j i.0462

--" 8.6 i.0 'i.5147+j 2773 00002-j 00009 1.9147+j. 2772

•_: 8.6 i.9 i.6677+J •9173 O.O0007+j •00049 i.6678+j •9178

_,-, 8.8 O.5 2.2717+j 9794 O.O0008-j. 00059 2.2718+j •9788

•_• 8.8 1.0 1.4931+j •2824 -.O0004+j. 00009 i._930+j •2825

Y_ 8.8 1.9 1.7988+j •9029 -.00032-j. 00073 i.7989+j •9022

i
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Slab thickness, cm.

(a) Frequency = 9.0 GHz.

Figure ii. - H-plane sectoral horn reflection coefficient as a function
of slab thickness for Plexiglas.
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(b) Frequency = 9.2 GHz.

Figure ll. - Continued.
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0 18°Flaremeasured

& 9° Flaremeasured

1.0 -- Calculated
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Figure ll. - Continued.
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Slabthickness,cm.

(d) Frequency= 9.6 GHz.

Figure ll. - Concluded.
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0 .2- .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0

Slabthickness,cm

(a) Frequency = 9.0 GHz.

::..-... Figur_ 12. - H-plane sectoral horn reflection coefficient as a fuz,ction
:_,: of slab thickness for quartz.
J _
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_: Discussion of Results

"" The assumption made in regard to the wave front incident on the

aperture will cause some error in the calculated results; that is, the

wave is actually a cylindrical wave rather than a plane wave. Most of

the reflection for the H-plane horns occur at the mouth for small flare

angles3 therefore, the reflections at the throat are small compared to

• the reflections at the mouth (a) El_.

Excellent agreement was obtained between the measured and calculated

data for free-space conditions. However, for slab covers, the magnitude

of the reflection coefficient for the measured data is consistently

i_ below the calculated data. As in the pyramidal horn experiment, the

inability to clamp the samples snugly to the ground plane and the non-

i: uniformities in the slab samples will cause some error in the measure-

ments. The surface waves trapped in the finite slabs could cause errors%

i in the aperture admittance as discussed in the previous chapter. Using
_ the equations for surface wave conductance (eqs. (46) and (47)), the

_._ surface wave conductance is computed and shown in table IV along with

.%.

_ the total conductance and percentage of surface wave conductance con-

_.

_, talned in the total conductance for the same two slab samples. The

';' percentage of surface wave conductance for both Plexiglas and quartz is

much greater for the H-plane horn than for the pyT_m:l.dal horni hence,

the edges of the finite slabs could have a greater effect on the aperture

admittance for the H-plane horn. The surface wave conductance is greater

_ for the quartz slab than for the Plexlglas slab. The data shows that
j,

). i i . i i|_ ,|•

(a)Discussion with P. Paths_ of the Ohio State University concerning
the reflections at the throat verify the fact that these reflections are

|
small for both horns.

i

I
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"._ TABLE IV.- CONDUCTANCE CALCULATIONS FOR H-PLANE HORN

t ....

Normalized conduct_uce
,i i

Frequency, Plexiglas Quartz
GHz ......

, Surface Surface
Total Per.cent Total Percent, wave wavei

<_ i i , m ,, i i i i

_' " 9.0 1.7333 0.7554 43.6 2.6525 1.3358 50.3

,: 9.2 i.7884 O.7795 43.5 2.7512 1.3879 50.4
b_

" 9.4 1.8429 O.8024 43.5 2.8482 1.4365 50.4
¢:

_: 9.6 z.895o o.8245 43.5 2,942x z.48o7 5o.3
, o,,,1'
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better agreement is obtained in the Plexiglas case. Therefore, the

data indicates that the Greater the surface wave conductance, the greater

the disagreement.

The E-plane radiation patterns were measured at 9.0 GHz for free

space for the O. 322 _n quartz slab and for the 0._¢4._ em Plexiglas slab.

These patterns are shown in figures 13 and 14. The ripple observed in

this case for both slabs is greater than the ripple observed in the

. pyramidal case; hence, the greater the trapped energy _15]. The greater

the trapped energy, the more strongly the surface wave is coupled into

the slab. The ripple for the quartz slab is greater than the ripple for

• the Plexiglas slab; therefore, the surface wave is greater for the quartz_

slab than for the Plexiglas slab. This is in agreement with the results

determined from the surface wave conductance computations.

9

. By fixing the H-plane mouth size (6.248 cm) for varying E-plane
$

.,,

mouth size, computations of the surface wave conductance were made at

X. 9.0 GHz for the two dielectric slabs. A plot of the surface wave con-
f:

:_:: ductance as a function of E-plane mouth slze is shown in figure 15 for

j!; the 0°322 em quartz slab and for O. _¢'5 em Plexiglas slab. 8_:i.lar graphs
fL'

_. for different frequencies and thicknesses can be made. As in the pyrao

midal horn case, the height can be chosen such that the surface wave

conductance is kept at a minimum. One must keep in mind that whatever

E-plane height is chosen, the feeding wavegu.t.de height _st be the sm_e

in order for the horn to be an H-plane horn.

Theoretically, as the flare angle approaches zero with fixed mouth

_ size, the H-plane sectoral horn would approach a uniform waveguide of

ii_ mouth size cross section_ and hence, the aperture admittance would be

I
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. 180°
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Figure 13. - E-plane radiation pattern at 9.0 GHz for free space

and 322 cm quartz slab.
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90°

270o

Figure 14. - E-_lane radiation pattern at 9.0 GHz for free space

and .345 cm Plexiglas slab.

I
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Figure 15. - Normalized surface wave conductance as a function
of E-plane mouth height at 9.0 GHz.
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determined by equation (45). Therefore, the measured reflection coeffi-

cient for the smaller flare angle horn (9° ) should be closer to the

theoretical results. This is the case for most conditions, especially

in comparing the magnitudes of the reflection coefficients for the two

flare angles in figures ii and 12.

¢

w
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" CHAPTER V

° CONCLUDING REMARKS

Variational expressions of the admittance of a uniformly fed

rectangular aperture covered with homogeneous material are derived.

The electric field inside the waveguide is assumed to be a dominant

mode (TEo1) plus the first higher order sys_netricalmode (TEo3). For

/ the aperture sizes of the pyramidal and H-plane horns, the contribution
*

of the TE03 mode to the aperture admittance is shown to be negligible.

Hence, the aperture admittance calculated using TEo1 mode only is

adequate.

" Assuming the admittance of a uniformly fed rectangular aperture

• to approximate the mouth admittance of the pyramidal and H-plane horns,

,_ good agreement between measured and calculated data for free-space

conditions was obtained for all horns. Therefore, it is concluded that

internal reflections and construction tolerances do not affect the

_,_ measurements appreciably.

z.

., Good agreement in terms of reflection coefficients was obtained

_ between the measured and calculated data for the pyramidal horn,

• particularly for the Plexiglas slabs. The major disagreement for the

quartz slab data is attributed to the amount of surface wave conductance

contributed to the total conductance of the aperture admittance. This

contribution was small for both slab samples, but the contribution for

_ the quartz slab was greater than the Plexiglas slab. Hence, the edges

,,_ " of the finite slabs are more strongly excited, thus possibly influencing

._f, the aperture admittance.

1970021193-079
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For the H-plane horns, the reflection coefficients at the mouth of

i - Yap where Yap
the horns are shown to be approximately equal to i + Yap
is the normalized mouth admittance for uniformly fed apertures. The

agreement between measured and calculated reflection coefficients for the

H-plane horn is not as good as the agreement obtained for the pyramidal

horn. However, this is in theory attributed to the flare angle and to

the effect due to surface waves. The smaller flare angle (9°) horn data

agreed better with the calculations than the larger flare angle (18° )

horn data, particularly for the magnitudes.

The amount of surface wave conductance for both slab samples con-

•_ tributed to the total conductance of the aperture admittance for the

H-plane horn is much greater than the contribution for the pyramidal

_ horn. Therefore, the edges of the finite slabs could have a greater

influence on the aperture admittance. This influence could be such that

the reflections at the aperture are reduced• The data indicates that

this is the case.

_:i The assumption made in regard to the mouth admittance in computing

!_ the reflection coefficients for both the pyramidal and H-plane horns

will cause some errors in the calculated data. In addition to this

error and the errors that could be caused by the trapped surface waves,

the inability to clamp the sample snugly to the ground plane and the

non-uniformities in the slab s_ples will also cause errors in the

measurement s.

" As the larger dimension in the expression for the admittance of a
"r

uniforml_ fed rectangular aperture approaches infinity, the aperture
m

_- admittance is shown to approach the admittance of a parallel plate

i
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wavegulde covered with a slab of homogeneous material. This is shown

both analytically and computationally (for free-space condition) for

the dominant mode. The agreement between the two methods of obtaining

the admittance of a parallel plate waveguide supports the validity of

the expression for the admittance of a rectangular aperture.
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" APPENDIX

The admittance of a rectangular aperture assuming the dominant

TE01 mode is given by the first equation in equation (45) of the text

as

c°(kx)- -_/2eJk_X_x-- Vx

' (ky kyy_ CI ) = cos -- d,yi o -b/2 b
4

g-.

_";," > (A-2)

%, g' (0) kzll sin kzlId - jkzIII cos kzlId
"_ _ _ ,

'_. g (0) kzIII
s cos kzlld + j ------ sin kzlld

• kzll

Cos kzIId + J _i kzIII sin kzIId
f(O) ¢0 kzII

::' f'(o) c1
_"_" EzIId
_,': kzII sin kzlId l j _0 cos&..<, /
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Determine what happens to the admittance expression given by equa-

tion (A-I) when the large dimension b approaches infinity. Under

this condition, equation (A-I) becomes

t 1_2y 2j_ j co( x co( xel(cl(4

b_- #(2. _ _ _

i!' × L-\ko/ \kog(O)J \koJ eO\f,(o)/udkx dk_r (A-4)_,'
j,

;, The limit term of equation (A-4) by using the second equation of (A-2)

_.- is written as

• /'b/2 eJkyy "
lira , ,, = lira _ _-b/2 c°s bb -_ b b -*_

[b/2 COS _y eJky y _ (A'9)
' _ -b/2 b

"_

?

t
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J cos2ZeJ_y dy._ b

_Y
where the two integrals are recognized as Fourier transforms of cos-6-"

Since the product of Fourier transforms equals the Fourier transform of

t the convolution of their inverse transforms, equation (A-5) is written

_. aS

"= Cl )el a-y
lira , - lim . os -_ * COS" " b -_ b b -_

]

_.: (A-6)

!i( f;. lira = iim cos cos _( T)d
:.,i b-_- b b__b_hd. "b- Y "
°

4

And hence,
; t,

.@

: l_ Cl(ky)Cl(kY)
b-_" b " = 7t6(I_1 (A'7)

where 5 (_) is the Dirac delta function.

Substituting equation (A-7) into (A-4),

2Yok@ J_a(2_ kx-_® J_-._ _(ky)- --- Co(kx)Co(kx) kx2+ky2'., Y_ llm Yap J )2

. 1_ '
if
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or

1Ya_- -Ja(2_)_ ___®_c°(kx)C°(_)% _'(o)_x

(A-p)

and from equation (A-2)

cI kzIII

coskzn kzIId4Y0 F _ sin2 _- eI

¢1 kzIII cos
jkzII sin kzIId + e-_ kzIId

(A-lO)

Dividing both numerator and denominator by cos kzlld

- f el kzIIIkxa + J _0 kzl'f- tan kzI

_; 4 JoSin2-_'0Je I l mSc
:::;: Yapp = _-_ kx2 kzll_e--Ikzlll + j tan kzlld

_ _0 kzII .

% (A-.1.1)

,_ Equation (A-II) gives the aperture admittance of a parallel-plate
X

waveguide. With a notational change of e2 = el' e0 = ¢2'

' II III
kz = kz,l, and kz = kz,2, equation (A-II) is identical to the

equation given by Jones [133.

The admittance of a rectangular aperture is also shown numerical_

to approach the admittance of a parallel-plate waveguide with zero

thickness of material (free-space condition). The admittance for

J a = 1.016 cm and frequency of 8.9 GHz is calculated using equation (A-l)
••'A

._.

,_, [,

%
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for increasingvalues of b under free-space conditions. These results

are compared in table A to the result obtained from the parallel-plate

solution given by Jones.

b

"_Z •

_g
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TABLE A.- PAP_J_EL PLATE ADMITTANCE CALCULATIONS

ii| i i , i • , ii

f = 8.9 GHz Value obtained from Jones'

a = 1.O16 cm Calculation = 0.8177+J.5033

. Dimension b, Admittance
cm normalized

• 2.286 O.7935+j•4058
3.286 •7618+j•4784

: 4.286 •7794+j•4957

i: 5.286 •8o59+j.4997
; 6.248 .8o2o+j.5oio

6.348 .8024+j.5011
8.000 .8086+j.5014k

,_ 9.000 •8109+j•5011
lO.000 .8126+j.5009
ii.000 •8139+J•5001

i 16.000 •8171+j•5002

| • | F i •

@
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